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In a recent sequence of  papers [ 1 -  3], Gutman and co-workers have repeatedly 
addressed the formal problem of  comput ing the average of the number  of  Kekul6 
structures over particular classes of  particular copolymer  structures imparted with 
a particular probability measure. The two monomer structures are catafused anthracenoid 
(A) and phenanthrenoid (B) hexagon graphs, as in figs. l(a) and (b), respectively. 
The Lth class is that of graphs with L - 2  monomers  each as in fig. l(a) or (b), 
together with two end hexagons as in fig. l(c). The probability measure assigns 

(a) (b) (c) 

Fig. 1. In (a), (b) and (c) are shown A, B and "end" 
monomer units, wherein the boldface edges indicate 
edges to undergo fusion with adjacent monomer units. 

a probability pro(1 - p ) n  to each (ordered) sequence of  A's and B's with m A's and 
n B's. In general,  several catahex chains (with different "left" or "right" bends for 
each B) correspond to each sequence. Also, 0 < p  < 1, and p evidently is the probability 
that a (internal) monomer  unit  is of  type A, while ! - p is the probability that it 
is of  type B. In the first paper [1], the solution to the stated problem was (at least) 
conjectured and in the last [3] rigorously proved. 

It may be of  some interest that the type of  problem so framed is also solved 
rigorously in a more  general context via an approach of  an earlier paper [4]. There,  
transfer matrices T a and T B for A and B monomers  are used to count  the Kekul6 
structures for a chain with a sequence C1, C2 . . . . .  CL _ 2 of monomers ,  as a trace 

K(C t, C 2 . . . . .  CL_2) = T r { p  Tcl T G . . .  TcL_2}, (1) 
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where p is a matrix characterizing the polymer ends. Indeed, (1) applies for quite 
general choices of the monomer units. Evidently, the average count desired by 
Gutman and co-workers is 

L - 2  

( (K))p ,L  - ~ ~., . . .  "~ K ( C 1 , C 2  . . . . .  CL-2) H P c , ,  (2) 
C1 C2 CL- 2 i=1 

where PA = P and PB = 1 - p.  Upon substitution of (1) into (2), one obtains 

((K))p, L = Tr{p TL-2}, (3) 

where we have followed ref. [4] in introducing an ensemble  transfer matrix 

T = p T  A + ( 1 - p ) T  a. (4) 

Now, ((K))p, L may be developed in terms of the eigensolutions to 'Z, thus 

((K>)p,L = ~ Az X L, (5) 

where the sum is over distinct nonzero eigenvalues ~ and A z is in general a poly- 
nomial in L with degree one less than the size of the maximum Jordan block associated 
to X. For the typical case where a Jordan block is trivial (i.e. as when T i s  
diagonalizable) 

A z = Tr (p  0~,)/,~ 2, (6) 

where Oz is the projector onto the ;tth eigenspace of 'Z. (Equations (5) and (6) 
follow directly from (4) via the spectral resolution of T)  For large L, the maximum 
(magnitude) eigenvalue A (with A A g: 0)  dominates 

((K))p, L = AAA L. (7) 

Here, the correction factor clearly differs from 1 by terms which decrease exponentially 
with L (e.g. 1 + O(MA)L). In fact, all these formulas apply for quite general "random" 
copolymer chains. 

For the choice of monomers considered by Gutman et al., 

P =  1 1 ' T A =  1 1 ' T B =  1 0 ' (8) 

as also is identified in [4]. This (rigorously) leads to the same results as already 
given elsewhere [1-4].  

Results may be given for other copolymers. In a conversation in the spring 
of 1989, Gutman suggested the pair of monomer units in fig. 2. In fact, one may 
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(a) (b) (c) 

Fig. 2. In (a), (b) and (c) are shown a second (width 
w = 2) choice for A, B and "end" monomer units, wherein 
boldface again indicates edges where fusion occurs. 

(a) (b) (c) 

Fig. 3. In (a), (b) and (c) are shown a third 
(width w = 3) choice for A, B and "end" monomer 
units, wherein boldface again indicates fusion. 

conceive of  a whole sequence of monomer units of  increasing width w: the first and 
second members are those of  figs. 1 and 2, while the third case is given in fig. 3. 
The relevant matrices may be rather readily obtained from ref. [5], which considered 
the B-type monomer. The A-type case may be derived from this by reversing row 
labels. For the type of polymer ends as indicated in figs. l(c), 2(c), 3(c), the relevant 
matrices are just w + 1 by w + 1, with elements given by 

(P)i)  = 1, i , j =  1 t o w + l ;  

1, i - j > O ,  
(Ta) i j=  O, i - j<O;  

1, i+j<_w+2, 
(TB)ij = O, i + j > w + 2 .  

(9) 

For the larger matrices, here the eigenproblem is conveniently implemented on a 
computer. Generally, the eigenvalues here should be nondegenerate, as in the p ---) 1 
limit [5]. 

A few qualifications, especially as relate to chemical relevance, seem to be 
in order. First, if the ends of the polymer chains change, then the structure of  the 
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present transfer matrices may change (or more properly, one changes from one 
block to another of a more complete transfer matrix) and thence also the whole set 
of  eigenvalues change as well as the numerical results. This is related to a type of 
"long-range order" implicit in Kekul6 structures, as has previously been discussed 
several times, together with a variety of  interesting chemical consequences (see 
refs. [4], [5] or [6], as well as other references therein). Second, for the random- 
polymer case it has also been suggested [4] that finer grained classes (or equivalently, 
a different probability measure) should be more relevant. These classes fix the 
numbers of  A- and B-type monomers. Then, the ensemble matrix T still plays a 
crucial role, but although the coefficients of T a and T B add to 1, they play the part 
of (thermodynamic) activities rather than concentrations (or probabilities). It emerges 
that phase transitions occur as these activities vary for some copolymers. 

Many further details may be found in ref. [4]. There is some lack of rigor 
and approximation too, in dealing with the finer grained ensemble. Still, the 
developments there are seen to directly allow rigorous solution of a more general 
problem than that of  Gutman et al. 

References 

[1] I. Gutman and S.J. Cyvin, Chem. Phys. Lett. 147(1988)121. 
[2] I. Gutman, Graph Theory Notes 15(1989)26. 
[3] I. Gutman, J.W. Kennedy and L.V. Quintas, J. Math. Chem., this issue. 
[4] D.J. Klein, T.P. ~vkovi6 and N. Trinajsti6, J. Math. Chem. 1(1987)309. 
[5] G.E. Hite, A. Metropoulos, D.J. Klein, T.G. Schmalz and W.A. Seitz, Theor. Chim. Acta 

69(1986)369. 
[6] D.J. Klein, T.P. ~ivkovi6 and R. Valenti, Phys. Rev. B43(1991)723. 


